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Abstract

Drug–gene interaction prediction occupies a crucial position in various areas of drug discovery, such as drug repurposing, lead discovery
and off-target detection. Previous studies show good performance, but they are limited to exploring the binding interactions and
ignoring the other interaction relationships. Graph neural networks have emerged as promising approaches owing to their powerful
capability of modeling correlations under drug–gene bipartite graphs. Despite the widespread adoption of graph neural network-
based methods, many of them experience performance degradation in situations where high-quality and sufficient training data
are unavailable. Unfortunately, in practical drug discovery scenarios, interaction data are often sparse and noisy, which may lead
to unsatisfactory results. To undertake the above challenges, we propose a novel Dynamic hyperGraph Contrastive Learning (DGCL)
framework that exploits local and global relationships between drugs and genes. Specifically, graph convolutions are adopted to extract
explicit local relations among drugs and genes. Meanwhile, the cooperation of dynamic hypergraph structure learning and hypergraph
message passing enables the model to aggregate information in a global region. With flexible global-level messages, a self-augmented
contrastive learning component is designed to constrain hypergraph structure learning and enhance the discrimination of drug/gene
representations. Experiments conducted on three datasets show that DGCL is superior to eight state-of-the-art methods and notably
gains a 7.6% performance improvement on the DGIdb dataset. Further analyses verify the robustness of DGCL for alleviating data
sparsity and over-smoothing issues.
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INTRODUCTION
Identification of interactions between drugs and genes allows the
simultaneous discovery of new drugs and target candidates [1–
3]. Unlike expensive conventional experiments [4], computational
methods aim to detect drug–gene interactions (DGIs) accurately
and cost-effectively [5–7], laying a cornerstone for drug discovery
and the management of a wide range of diseases [8–12].

Nevertheless, previous studies on DGI prediction are mainly
focused on binding interactions and overlook the other relation
types of interactions, such as modulator and allosteric modula-
tor [13]. Modulator interactions occur when a drug regulates or
changes the activity of its target gene. Interactions of this class
may not be relevant to the binding of a drug to a gene. In contrast,
allosteric modulator interactions take place when drugs have
impacts on their target genes via a binding site different from the
natural ligand site. Therefore, it is vital to take into account multi-
relational DGIs.

Recently, graph neural networks (GNNs) have shown prominent
performance in DGI prediction owing to their excellent ability to
express relational data [14]. In GNN-based methods, multi-hop
convolutions are performed on the drug–gene bipartite graph,
exploiting the initial graph structure to capture explicit drug–gene
relations. However, such information harvested from a fixed graph

structure is easily contaminated by noisy interactions stemming
from inevitable false-positive samples [15–17].

While GNN-based models have offered state-of-the-art perfor-
mance, most of them adhere to the supervised learning paradigm,
in which model training requires sufficient DGI signals. As a
consequence, they are potentially vulnerable to data sparsity,
which is a pervasive issue in the drug discovery field [18]. Since
only a limited number of DGIs are determined following a series
of wet-lab experiments, GNN-based models may not be able to
perform high-quality prediction in this scenario. Apart from the
data sparsity issue, GNN-based methods struggle with the over-
smoothing issue. The node embeddings tend to become indistin-
guishable as the number of layers increases [19, 20], leading to a
decrease in the model performance.

In this paper, we present a novel Dynamic hyperGraph Con-
trastive Learning (DGCL) framework that injects local and global
relations into the representations for DGI prediction. A hyper-
graph is composed of nodes and hyperedges which can connect
two or more nodes [21, 22]. The complex global-level correlations
of drugs and genes can be naturally modeled by hypergraphs. Dif-
fering from previous studies, DGCL distinguishes itself through its
effective handling of sparse and noisy data, along with its capacity
to mitigate the over-smoothing issue. Furthermore, our work not
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only offers accurate DGI prediction but also facilitates the under-
standing of the mechanisms underlying drug interactions. Con-
cretely, graph convolutions are applied to embed local structure
information. As a complement to the explicit local topology-aware
embeddings, a hypergraph structure learning module is designed
to encode implicit global dependencies. Compared with the pre-
defined hyperedges, our module optimizes the potential node
relatedness dynamically during the training process to construct
the adaptively learnable hypergraph structure, which is better
aligned with the model’s objective and more robust to the noisy
information of original DGIs.

Although the learnable hypergraph structure models DGIs in a
more capable and flexible manner, the superiority of the hyper-
graph comes with an overfitting issue. To overcome the chal-
lenge brought by dynamic hypergraph learning, the automatic
learning of the hypergraph is constrained through contrastive
learning in which representations of two views are aligned. In
DGCL, we are naturally provided with two contrastive views: the
original bipartite graph and the learned hypergraph. Instead of
performing graph augmentation, which might corrupt pivotal
interactions, essential information hidden in the original graph is
retained with our self-augmented contrastive learning. Moreover,
both the over-smoothing issue and the data sparsity issue can
be alleviated by contrastive learning due to the discrimination
enhancement of representations and the auxiliary self-supervised
signals.

Our main contributions are summarized as follows:

• We propose a novel dynamic hypergraph contrastive learning
framework named DGCL to mitigate the over-smoothing and
data sparsity issues of GNN-based models. To the best of our
knowledge, this is the first hypergraph-enhanced method for
multi-relational DGI prediction.

• In the proposed DGCL, the implicit global dependency is mod-
eled via global message passing on the dynamically learnable
hypergraph, which is guided by the designed effective self-
augmented contrastive learning paradigm with local and
global dependency as two contrastive views.

• Extensive experiments conducted on three public datasets
show that our approach consistently outperforms competi-
tive baselines.

RELATED WORK
DGI prediction aims to determine the interactions of drug–gene
pairs and has greatly contributed to the success of drug devel-
opment. Here we mainly introduce the prevailing feature- and
network-based methods.

Inspired by the success of artificial intelligence [23–25], most
feature-based models leverage well-established deep learning
architectures to generate representations of drugs and genes. For
instance, DeepConv-DTI [26] utilizes fully-connected layers with
ECFP [27] as inputs to encode drugs. The DeepDTA model [28]
attempts to learn drug and target representations by employing
convolutional neural networks (CNNs) [29] on drug SMILES
strings and protein sequences. GraphDTA [30] converts SMILES
into graphs and strives to generate representations of drugs by
leveraging GNNs.

In addition to feature-based methods, several studies have
investigated network-based approaches for DGI prediction, gar-
nering considerable attention [31, 32]. These methods rely on
the construction of a network to learn low-dimensional repre-
sentations of drugs and genes. In the network, nodes represent

biological entities and edges represent relationships between enti-
ties. The ability of network-based methods to integrate hetero-
geneous data and model complex relationships has led to a
promising performance [33]. Moreover, network-based models can
achieve excellent performance under the setting where models
are completely driven by the network topology while disregarding
extra features. Hence, the unavailability of domain features is
circumvented.

Nevertheless, limitations still exist in the methods mentioned
above. Firstly, feature-based methods require careful feature engi-
neering or dimensionality reduction techniques [34, 35]. Their
satisfactory performance largely relies on the availability of high-
quality domain features [36–38]. Meanwhile, some features are
essential for DGI prediction but may be absent for most kinds
of drugs/genes in large-scale datasets [39]. Secondly, network-
based methods are incapable of distilling the long-range context,
which is critical to understanding the underlying mechanisms
of DGI and facilitating the discovery of new drugs/druggable
genes. Lastly, the majority of existing feature-based and network-
based methods only focus on binding interaction records while
neglecting other potential relations among drugs and genes. In
this study, we propose to model interaction types between drugs
and genes by contrasting and integrating the graph-based local-
level and hypergraph-based global-level representations.

METHODOLOGY
Overview of DGCL
The overall framework of our proposed DGCL is illustrated in
Figure 1. At a high level, DGCL first constructs a bipartite graph,
and then learns the locally aggregated embeddings of drugs/genes
via the conventional graph-oriented message passing process.
Meanwhile, DGCL figures out global semantic neighbors to com-
plement the local structure information through the designed
hypergraph neural network (HGNN) with dynamic hypergraph
structure learning. Moreover, self-augmented graph contrastive
learning is performed between the local topology and global
semantic views to constrain the learned hypergraph structure.
Based on the abovementioned well-designed modules, DGCL esti-
mates the type of interaction between drug and gene with state-
of-the-art performance.

Explicit local relation modeling
Given DGIs with M drugs and N genes, we first construct the origi-
nal drug–gene bipartite graph which models the observed interac-
tions. The explicit relation within drugs and genes is encoded by
the node’s local topology. Inspired by LightGCN [40], we adopt a
simplified version of GCN [41] to capture the local dependency.
As a common practice, we assign initial ID embedding vectors
to drugs and genes in the raw bipartite graph. Specifically, we
create two learnable parameter matrices defined as E(d) ∈ R

M×d

and E(g) ∈ R
N×d, where d denotes the embedding size. Unlike the

conventional GCN, the activation function and feature transfor-
mation are discarded during the aggregation of embeddings from
neighbors, as these may not provide benefits to the target task.
The propagation process in layer l can be expressed as:

El−1 = [E(d)

l−1, E(g)

l−1], (1)

Ēl = p(Ā)El−1, (2)

where E(d)

l−1/E(g)

l−1 represents either the initial embeddings E(d)

0 /E(g)

0 ,
or the aggregated embeddings of drugs/genes from the (l − 1)-th

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/6/bbad371/7325811 by H

unan U
niversity user on 28 O

ctober 2023



Dynamic hyperGraph Contrastive Learning | 3

Figure 1. The overall framework of DGCL. The first frame describes the interaction graph and dynamic hypergraph construction process. The solid black
lines represent pair-wise edges, which can only connect two nodes. The yellow rounded rectangle indicates a hyperedge, which is capable of connecting
two or more nodes. In the second frame, each node communicates with its 1-hop neighbors through local message passing (dashed purple lines) by
pair-wise edges (solid black lines). In addition, the long-range information is propagated through global message passing (dashed red lines) by utilizing
the hyperedge (yellow node) as an intermediate hub. Then, the embeddings from each layer of GNN and HGNN are bridged by the integration and
contrastive learning components, which are illustrated in the top left and top right parts of the second frame, respectively. With the final drug/gene
embeddings that aggregate both local messages and non-local messages, the interaction types of given drug–gene pairs are predicted via multi-layer
perceptron (MLP).

propagation layer. p(·) denotes the edge dropout operation which
mitigates overfitting. Ā is the normalized adjacency matrix calcu-
lated as

Ā = D̄− 1
2 (A + IM+N)D̄− 1

2 , (3)

A =
[

0 R
R� 0

]
, (4)

where D̄ represents a (M + N) × (M + N) degree matrix whose
diagonal entries are the degrees of nodes, and D̄ii = ∑

j(A+ IM+N)ij.
IM+N denotes the identity matrix. A represents the adjacency
matrix. During message passing, the self-connection operation is
included by adding the identity matrix to the adjacency matrix. It
integrates the (l − 1)th layer information of nodes, avoiding infor-
mation dilution. R ∈ R

M×N denotes the binary matrix representing
DGIs.

Dynamic hypergraph structure learning
Though existing graph-based models are capable of extracting
local structural information of observed DGIs, the underlying
correlations among drugs or genes are hard to be learned from
the immutable graph structure. To empower DGI prediction with
global structure learning, thus breaking the above-mentioned
limitation, we propose dynamic hypergraph learning optimized
along with model training to inject the structural information
from the global perspective. In comparison with the pre-defined
hypergraph, which may not be intrinsically adaptive to the pre-
diction task, resulting in suboptimal performance, the proposed
dynamic hypergraph structure is adjustable to different tasks and
datasets.

We argue that it is sufficient to construct the hypergraph which
reflects the implicit dependencies among drugs and genes on the
fly according to the topological relationship of the initial bipar-
tite graph and the task-specific supervised signals. Specifically,
we perform the dynamic hypergraph structure learning based
on two learnable adjacency matrices H(d) ∈ R

M×K and H(g) ∈
R

N×K denoting drug- and gene-hyperedge matrices, respectively.
K denotes the number of hyperedges. However, when there is a
huge number of hyperedges or drugs/genes, the cost of computing
the hyperedge matrix for drugs/genes will skyrocket. For the sake
of scaling to a larger number of hyperedges and drugs/genes,
directly learning dense matrices may be impractical. To remedy
this issue, we assume that nodes’ connections with hyperedges
are more likely akin if their local structures are similar. Based on
the assumption, we factorize H(d) and H(g) as follows:

H(d) = E(d)W(d), H(g) = E(g)W(g), (5)

where W(d) and W(g) ∈ R
d×K denote the trainable parametric

matrices for drug-hyperedge matrix and gene-hyperedge matrix,
respectively. E(d) and E(g) are the embeddings of drugs and genes,
respectively. In this way, we approximate the drug-hyperedge
matrix and gene-hyperedge matrix with low-rank matrices to
reduce the size of model parameters and avoid overfitting.

Implicit global relation modeling
To harvest the potential relationships among drugs and genes, we
design the hypergraph message passing layer, which performs the
embedding propagation upon the adaptive hypergraph. Following
HGNN [22], we initially aggregate the embeddings of drugs/genes
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to generate the embeddings of hyperedges. Subsequently, we com-
pute the node embeddings by aggregating the information from
hyperedges. In our hypergraph message passing layer, the mes-
sages of drugs and genes can be efficiently communicated in a
manner of breaking the distance limitations.

To be specific, we formulate the hypergraph message passing
on the learned hypergraph as follows:

Ẽ(d)

l = H(d)Z(d) = H(d)H(d)�E(d)

l−1, (6)

where Z(d) ∈ R
K×d represents the hyperedge embeddings for drugs.

Ẽ(d)

l ∈ R
M×d denotes the embeddings of drugs learned from the

dynamic hypergraph in layer l. By analogy with equation (6), we
can generate the hypergraph-based gene embeddings Ẽ(g)

l ∈ R
N×d.

In a nutshell, our proposed hypergraph message passing pro-
cess takes the drug and gene embeddings E(d)

l−1 and E(g)

l−1, and the
learnable hypergraph adjacency matrices H(d) and H(g) as inputs
to model the global property for DGI patterns.

Local-global self-augmented contrastive learning
The foregoing modules combine the learning of the dynamic
hypergraph structure with the exploration of global relations to
learn non-local messages over the entire graph, alleviating over-
smoothing. However, it will lead to the overfitting problem when
the hypergraph structure learning relies solely on the supervised
signals. Drawing inspiration from the successful practice of con-
trastive learning [42, 43], we propose an effective contrastive
learning paradigm to provide auxiliary self-supervised signals for
constraining the learned hypergraph structure.

More precisely, our contrastive learning framework contrasts
the local topology-aware embeddings of the original interaction
graph with the global semantic-aware embeddings of the dynamic
hypergraph. Compared with the common graph contrastive learn-
ing methods which generate two extra views by augmenting the
original graph through random perturbation, our proposed self-
augmented contrastive learning paradigm avoids misleading the
information encoding of drugs and genes. In our method, the
local-level and global-level embeddings serve as two naturally
augmented views.

Based on InfoNCE [44], our proposed contrastive learning objec-
tive is formulated as follows:

L(d)
s =

M∑
i=1

L∑
l=1

− log
exp(sim(ē(d)

i,l , ẽ(d)

i,l )/τ)∑M
i′=1 exp(sim(ē(d)

i,l , ẽ(d)

i′ ,l )/τ)
, (7)

where sim(·) represents computing the cosine similarity of local
interaction-aware embedding ē(d)

i,l and global interaction-aware

embedding ẽ(d)

i,l , and τ denotes the temperature hyperparameter
which controls the penalties on hard negative samples. We treat
two embeddings of the local learning view and global learning
view from the same drug/gene as a positive pair, and generate
negative samples using all the possible combinations of local
and global embeddings from different drugs/genes. The distance
between a positive pair is minimized while the distance between
a negative pair is maximized. The object L(g)

s for genes is defined
in an analogous way. It is crucial to underscore that we apply
a stop-gradient operation on ē(d)

i,l /ē(g)

i,l , which encodes the local
graph structure. This operation makes the model more inclined to
constrain the hypergraph. The above contrastive learning guides
the local features to supervise the embedding learning based on
global features, thus restricting the optimization of the implicit
structure.

Integration
To deepen the integration of knowledge from local and global
perspectives, the following operations are performed in each layer.
Concretely, we aggregate local messages first, then propagate non-
local embeddings. At last, we combine the local-global depen-
dency embeddings to generate input embeddings:

e(d)

i,l = ē(d)

i,l + ẽ(d)

i,l , e(g)

j,l = ē(g)

j,l + ẽ(g)

j,l , (8)

where ē(d)

i,l denotes the embedding of drug i aggregated from itself

and its explicit neighbors in layer l. ẽ(d)

i,l is the lth layer embedding
of drug i updated through the HGNN. We perform element-wise
addition on ē(d)

i,l and ẽ(d)

i,l to construct the fused embedding e(d)

i,l of

drug i. The input embedding e(g)

j,l for gene j is calculated analo-

gously. e(d)

i,l and e(g)

j,l will be utilized for local and global information
extraction as inputs in the next layer.

The residual connections [45] are further employed to calculate
the final drug/gene embeddings as follows:

ê(d)

i =
L∑

l=0

e(d)

i,l , ê(g)

j =
L∑

l=0

e(g)

j,l . (9)

This operation emphasizes the semantics of each layer’s output
and avoids the over-smoothing issue.

Prediction
The fully connected layers with the concatenation of embeddings
from drug i and gene j as inputs are applied to estimate the
probability of each drug–gene relation type:

ŷ = softmax(W2ReLU(W1(ê
(d)

i ||ê(g)

j ) + b1) + b2), (10)

where ŷ ∈ R
C, with C as the number of interaction types. W1 and

W2 are learnable weight matrices. b1 and b2 are bias vectors.
Formally, the objective function of DGI prediction is formulated

as follows:

Lp = −
C∑

c=1

yc log ŷc, (11)

where yc ∈ {0, 1}, indicating whether the class label c is the true
label for the drug–gene pair. ŷc denotes the predicted probability
that the relation type of the DGI sample is type c.

Optimization
The goal of our model is to predict the interaction types between
drugs and genes. We regard the contrastive learning task as an
auxiliary task to jointly learn with the prediction task using a
multi-task learning strategy. The combined objective is defined
as follows:

L = Lp + λ1(L(d)
s + L(g)

s ) + λ2‖�‖2
2, (12)

where λ1 and λ2 are trade-off hyper-parameters. λ1 controls the
weight of the contrastive learning loss and λ2 is the weight decay
coefficient for the model-specific regularization term to prevent
overfitting. � denotes the parameters of the model.
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Table 1. The statistical details of the datasets

Datasets Drugs Genes Interactions Types

DrugBank 425 11 284 80 924 2
DGIdb 1185 1664 11 366 14
LINCS L1000 187 3769 20 610 2

EXPERIMENTS
Experimental setup
Datasets. Three multi-relational datasets are utilized in our exper-
iments to evaluate the performance of our model and the base-
lines: DrugBank, DGIdb and LINCS L1000. These datasets are
widely used, and they possess complementary strengths, enabling
them to verify models from various perspectives. The statistical
details of the datasets are shown in Table 1.

DrugBank [46]: The DrugBank dataset contains two types of
relation about drugs regulating gene expression: upregulation and
downregulation of genes (i.e., increased and decreased).

DGIdb [13]: A dataset mined from 41 data sources contains
14 types of DGI. The interaction types include ligand, activator,
inhibitor, vaccine, cofactor, etc.

LINCS L1000 [47]: It profiles changes in gene expression and
cellular processes that are perturbed by different drugs, providing
two types of interactions: increased and decreased.

Compared models. Following [14], we compare our DGCL with
two groups of competitive methods: matrix factorization (MF)-
based methods (MC, GRALS and F-EAE) and GNN-based methods
(GC-MC, sRGCNN, PinSage, IGMC and CoSMIG). The results of
baselines are taken from [14].

• MC [48]: It proposes an algorithm for accurately completing
missing entries in a partially observed matrix based on con-
vex optimization.

• GRALS [49]: Graph Regularized Alternating Least Squares
(GRALS) is a graph-regularized matrix factorization method
that integrates structural information in the form of
graphs.

• F-EAE [50]: A method for prediction of interactions between
two or more sets of objects using deep neural networks. The
interactions are represented as an exchangeable matrix or
higher-dimensional tensor.

• GC-MC [51]: A graph auto-encoder framework that performs
message passing on the bipartite graph which represents
interaction data.

• sRGCNN [52]: It leverages the local stationarity structures
of graphs and reduces the size of learnable parameters, by
adopting graph convolutional neural networks and recurrent
neural networks.

• PinSage [53]: A model utilizes random walks to sample neigh-
bors and performs graph convolutions on the graph with node
attributes.

• IGMC [54]: A matrix completion method that does not rely on
side information. It involves two steps: extracting enclosing
subgraphs and applying a GNN.

• CoSMIG [14]: It proposes a subgraph representation learn-
ing framework to predict the relation types of interactions
through a communicative message passing mechanism.

Evaluation metrics. To evaluate the performance of multi-
relational DGI prediction, we adopt the widely used accuracy score
(ACC) as the evaluation metric, which measures the percentage
of samples that have been predicted correctly.

Implementation details. For the implementation of our proposed
framework, the model is trained with Adam [55] as the optimizer
and a learning rate of 1e−3. The embedding dimension is set to 128.
The batch size is set as 4,096. The number of graph convolution
layers and hypergraph propagation layers is configured as 3.
The weights λ1 and λ2 are searched from {1e−4, 1e−3, 1e−2, 1e−1}
and {1e−8, 1e−7, 1e−6, 1e−5}, respectively. The edge dropout ratio
of the original bipartite graph is tuned from {0.25, 0.5, 0.75}.
The temperature τ in contrastive learning is selected from
{0.1, 0.3, 1, 3, 10}.

Overall performance
To verify the superior predictive performance of our model, we
compare DGCL with other competitive methods. Table 2 sum-
marizes the experimental results carried out on DrugBank and
DGIdb datasets. The best result is marked in boldface and the
second best result is underlined. Based on these results, we find
the following observations and draw the main conclusions:

• Compared with the MF-based methods MC, GRALS and
F-EAE, GNN-based methods (GC-MC, sRGCNN, PinSage,
IGMC and CoSMIG) exhibit consistent superiority. This
suggests that the embeddings of drugs and genes learned
by the matrix factorization techniques may be inadequate
to carry the characteristics of DGI types. For GNN-based
methods, their robust prediction performance could be
attributed to the effectiveness of exploiting relations in a
local region by applying GNN to the bipartite graph. GNN
endows these methods with the ability to capture explicit
correlations between local neighbors, thereby enhancing DGI
prediction.

• Our proposed DGCL consistently outperforms both MF-based
and GNN-based methods. In comparison with the strongest
baseline CoSMIG, DGCL has a 1.6% improvement with respect
to ACC in DrugBank. For the DGIdb dataset, DGCL reaches
a significant improvement over CoSMIG by 7.6% in terms of
ACC. One of the reasons for the performance improvements is
the injection of global messages. The other reason is that the
embeddings generated from traditional GNN-based methods
are easily misled by sparse and noisy datasets of DGI, and will
become indistinguishable with the increase of propagation
layers.

• The reasons for DGCL performing significantly better with
the DGIdb dataset than with the DrugBank dataset can be
attributed to two main factors. Firstly, the performance of
all models on DGIdb surpasses that on DrugBank, indicating
that the inherent complexity of the DGIdb dataset is lower
than that of the DrugBank dataset. It is easier for models to
capture the nonlinear relationships of DGIdb samples com-
pared with DrugBank samples. Secondly, due to the relatively
fewer and sparser samples in DGIdb compared to DrugBank,
coupled with its imbalanced nature, DGCL’s advantages in
mitigating data sparsity and handling imbalanced datasets
become more pronounced. As a result, DGCL demonstrates
a significant improvement over other models on the DGIdb
dataset.

Ablation studies
To investigate the effects of the prominent components in DGCL,
we conduct ablation studies on DrugBank and DGIdb by analyzing
the contribution of our proposed implicit global structure learning
and self-augmented contrastive learning.
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Table 2. Performance comparison with baselines on DrugBank and DGIdb datasets. ‘–’ represents a vacant position, indicating that the
result is not reported in the original paper

Methods DrugBank DGIdb

Validation ACC Test ACC Validation ACC Test ACC

MF-based MC – 0.518(0.013) – 0.559(0.009)
GRALS – 0.532(0.021) – 0.578(0.016)
F-EAE – 0.566(0.004) – 0.623(0.003)

GNN-based GC-MC – 0.586(0.008) – 0.601(0.005)
sRGCNN – 0.602(0.010) – 0.689(0.007)
PinSage – 0.629(0.004) – 0.713(0.005)
IGMC – 0.634(0.003) – 0.803(0.006)
CoSMIG 0.658(0.008) 0.678(0.003) 0.840(0.011) 0.852(0.012)

Proposed DGCL 0.674(0.003) 0.694(0.002) 0.920(0.001) 0.928(0.002)

Table 3. Ablation study on main components of DGCL

Variants DrugBank DGIdb

Validation ACC Test ACC Validation ACC Test ACC

DGCLw/o CL 0.661(0.004) 0.672(0.002) 0.897(0.004) 0.911(0.002)
DGCLw/o Hyper 0.651(0.002) 0.668(0.004) 0.866(0.003) 0.888(0.003)
DGCL 0.674(0.003) 0.694(0.002) 0.920(0.001) 0.928(0.002)

Table 3 presents the results of the following variants:

• DGCLw/o CL: This is a DGCL variant in which we disable the
self-augmented contrastive learning module. It relies on both
local and global messages to capture more rich associa-
tion relations among drugs and genes. However, its dynamic
global neighbors are explored without the constraints of con-
trasting with local neighbors.

• DGCLw/o Hyper: This is a variant of DGCL in which the implicit
global structure learning component is removed. The embed-
dings of drugs/genes learned by this variant only aggregate
information from local neighborhoods. The global messages
over an entire graph are not collected by the model.

From Table 3, we can observe that the two variants without
different components both degrade the performance of predict-
ing DGI. This indicates that the removed components are of
great significance for the performance improvements in modeling
interaction types. Moreover, DGCLw/o Hyper exhibits inferior perfor-
mance compared to DGCLw/o CL, further emphasizing the benefits
of exploiting implicit high-order relations through the dynamic
hypergraph.

Performance of DGCL in alleviating
over-smoothing
To validate that the proposed DGCL can alleviate the over-
smoothing issue, we compute the Mean Average Distance (MAD)
[56] values of the embeddings generated by DGCL and its two
variants (DGCLw/o Hyper and DGCLw/o CL). MAD is a quantitative
metric that measures the global smoothness of a graph. As
it is obtained by averaging the cosine distance between each
node pair, smaller MAD values indicate more indistinguishable
embeddings, i.e., the more obvious over-smoothing phenomenon.
The MAD results are reported in Table 4. From the results, we
can see that DGCLw/o Hyper and DGCLw/o CL have smaller MAD
values than DGCL. Apart from this, the MAD values of our

proposed DGCL get close to 1, which means that DGCL is effective
in over-smoothing alleviation. We consider the reasons for the
above observations from two aspects. First, the integration of
embeddings from local and global relation learning is help to
avoid the situation of embeddings tending to converge to the
same values. Second, the self-augmented contrastive learning
module makes the drug/gene embeddings more discriminative by
contrasting the local information encoded with GCN and global
information encoded with HGNN.

Performance of DGCL in addressing data sparsity
We evaluate the robustness of our proposed DGCL in the face
of sparse interaction data. Towards this end, we focus on drugs
with less than 20 interactions. Then, we compare the prediction
performance of DGCL, DGCLw/o Hyper, DGCLw/o CL and the best
baseline CoSMIG on this fraction of drugs. Figure 2 reports the
results for performance on DrugBank and DGIdb. As shown in
Figure 2, we can find that DGCL and its variants all perform better
than CoSMIG. Meanwhile, the performance gap between DGCL
and CoSMIG in sparse interaction data is larger than the gap in
overall performance presented in Table 2. In addition, removing
either the dynamic hypergraph learning component or the self-
augmented contrastive learning component compromises the
performance of DGCL in sparse data. These results verify that
DGCL has the potential in handling sparse data by facilitating the
embedding learning for tail drugs/genes. We ascribe this potential
to the well-designed global message passing mechanism and
contrastive learning module.

For tail drugs/genes, GNNs aggregate messages from a limited
number of neighbors, potentially leading to biased or underrep-
resented representations. In contrast, DGCL leverages dynamic
hypergraph construction to generate a larger set of neighbors for
these tail nodes, effectively capturing long-range dependencies.
DGCL can identify drugs/genes that appear to have similar
representations and establish connections between them.
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Table 4. MAD values of the drug/gene embeddings

Variants DrugBank DGIdb

Validation Test Validation Test

Drug DGCLw/o CL 0.978 0.978 0.974 0.977
DGCLw/o Hyper 0.678 0.606 0.927 0.931
DGCL 0.997 0.997 0.995 0.997

Gene DGCLw/o CL 0.980 0.976 0.984 0.985
DGCLw/o Hyper 0.819 0.781 0.934 0.929
DGCL 0.998 0.999 0.999 0.999

Figure 2. The performance of DGCL, DGCL’s variants and CoSMIG on sparse data.

Consequently, DGCL enables the propagation of more meaningful
messages through the hyperedges, reducing the reliance on their
sparse neighbors. In addition to hyperedges, the contrastive
learning module can provide auxiliary self-supervised signals
to enhance the representation learning of tail drugs/genes.

Hyperparameter analysis
We further evaluate the influence of the following hyper-
parameters on DGCL’s performance: the dimensionality of
embeddings and the number of layers. The evaluation results
on DrugBank and DGIdb are shown in Figure 3.

• The dimensionality of embeddings. We conduct experi-
ments to validate whether the dimensionality of embeddings
will exert an influence on performance. Concretely, we vary
the dimensionality of embeddings in {16, 32, 64, 128}. From
Figure 3, we can observe that the performance of DGCL
increases with the higher dimensionality of embeddings.
Such results are expected since the low dimensionality of
embeddings is insufficient to preserve the information of
drugs/genes.

• The number of layers. Experiments have shown that the
optimal model performance is achieved when the number
of propagation layers is 3. Moreover, we can see that the
performance of DGCL is relatively stable under different con-
figurations of layer number. This advantage can be ascribed
to our proposed local and global aggregations, which can
aggregate sufficient information from local and global neigh-
bors through one propagation layer. In addition, the local and
global aggregations also equip our model with the potential
ability against the over-smoothing issue in deeper architec-
tures.

External test on LINCS L1000
To confirm the generalization ability of our proposed DGCL, we
perform the external evaluation on the LINCS L1000 dataset. In
particular, we utilize DrugBank as the training set and LINCS
L1000 as the testing set. The results of DGCL, DGCLw/o Hyper,
DGCLw/o CL and CoSMIG are presented in Figure 4. As can be seen
from the results, DGCL achieves the best performance among all
models and significantly outperforms the best baseline CoSMIG
by 4.6% with respect to ACC. These observations demonstrate the
generalization powers of DGCL for discovering potential interac-
tions.

Visualization analysis
We visualize embeddings of the samples using t-distributed
stochastic neighbor embedding (t-SNE) [57], aiming to test
whether samples of the same relation would have similar
embeddings. Figure 5(A) and (B) display the visualizations of
the embeddings from DrugBank and DGIdb, respectively. It can
be observed that the embeddings obtained from DGCL fall into
distinct clusters which correspond to their interaction types in
the two-dimensional space, indicating the excellent performance
of our model in discriminating different kinds of DGI.

Imbalanced dataset performance analysis
In addition to accuracy, we also calculate sensitivity for DGCL and
the best baseline CoSMIG on the DrugBank and DGIdb datasets
to comprehensively evaluate predictive models from multiple
perspectives. The sensitivity values for DGCL and CoSMIG on the
DrugBank dataset are 0.693 and 0.677, respectively. On the DGIdb
dataset, the sensitivity values for DGCL and CoSMIG are 0.815
and 0.713, respectively. As DGIdb is an imbalanced dataset, the
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Figure 3. The impact of embedding dimensionality and layer number.

Figure 4. Performance of DGCL on LINCS L1000 dataset.

models may perform favorably on the majority classes but exhibit
suboptimal performance on the minority class. If a class exhibits
notably low performance, this can substantially influence the
sensitivity score due to the equal contribution of each class to the
final evaluation. According to the sensitivity values of the DGCL
and CoSMIG models on the DGIdb dataset, it is evident that DGCL
outperforms CoSMIG in handling imbalanced datasets.

DGCL identifies novel DGIs
To further validate DGCL’s predictive capabilities, we conduct
novel DGI prediction for the gene HMOX1 using DrugBank
as the training set. HMOX1 is well-documented for its anti-
inflammatory and anti-oxidant activities, constituting a pro-
tective mechanism that regulates the inflammatory response
in lesional skin. Supplementary Table 1 provides a detailed
presentation of the top-10 DGCL-predicted novel DGIs, including
the canonical name of the drug, the predicted interaction, gene
name and supporting literature references. These predictions are
not present in the current datasets but have supporting literature
references.

The results reveal that 70% of the top 10 drugs (7 out of 10) are
substantiated by previous studies in the literature. Specifically,
DGCL predicts that Estriol, a weak estrogen, could lead to an
increase in HMOX1 expression. This prediction finds support in
prior research indicating higher levels of HMOX1 expression in
non-menopausal patients (with higher blood levels of estrogen)
compared to menopausal patients [58]. Deficiencies in female
sex hormones appear to be among the risk factors influencing
the progression of psoriasis in women. Therefore, maintaining
normal physiological levels, achieved through Estriol treatment,
may potentially prevent or mitigate the disease.
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Figure 5. Visualization of interaction embeddings. Interactions from DrugBank and DGIdb are illustrated in (A) and (B), respectively.

Application of DGCL to drug–drug interaction
prediction
We rank all potential drug–drug interactions, which may lead to
polypharmacy side effects, based on the embedding similarities of
drug pairs. Subsequently, we verify the top 10 predicted drug–drug
interactions using evidence from multiple sources. As demon-
strated in Supplementary Table 2, while there is no interaction
information between different drugs in the DrugBank dataset,
7 out of these 10 predicted drug–drug interactions have been
confirmed. This shows our DGCL’s capability to infer implicit cor-
relations among drugs by generating similar embeddings solely
based on DGI data.

CONCLUSION
In this work, we present a novel hypergraph-based framework,
coined DGCL, to perform message aggregation in a local and
global region for seeking better DGI modeling. In DGCL, we design
the dynamic hypergraph structure learning and self-augmented
contrastive learning to improve the prediction performance
and robustness against over-smoothing and data sparsity
issues. Through extensive experiments on several datasets,
we have demonstrated the effectiveness and generalizability
of the proposed DGCL. Our work shows that the adaptive
hypergraph can offer promising prospects for an effective means
of interaction modeling, motivating broad expansion to many
other applications, such as drug–drug interaction prediction and
protein–protein interaction prediction, in future explorations.

While our current investigation has centered on utilizing the
drug–gene bipartite graph for multi-relational DGI prediction, it is
important to highlight the good adaptability and flexibility that
the DGCL framework offers. Depending on the specific task at
hand, the drug–gene bipartite graph can be substituted with the
alternative bipartite graph.

Key Points

• We present a general dynamic hypergraph contrastive
learning framework for multi-relational DGI prediction,
with remarkable effectiveness, robustness and general-
ization.

• The proposed model employs the cooperation of
dynamic hypergraph structure learning and hypergraph

message passing, which adaptively captures the implicit
global dependency. Furthermore, the self-augmented
contrastive learning module is designed to provide guid-
ance for the dynamic learning of the hypergraph.

• The experiments on three datasets demonstrate that
our model outperforms the state-of-the-art methods. In
addition, further analyses are presented to justify the
superiority of the proposed model.

FUNDING
This work was supported by National Natural Science Foundation
of China (62372159, 62122025, 62102140, 61972138, 61872309); The
Science and Technology Innovation Program of Hunan Province
(2022RC1100, 2022RC1099); Hunan Provincial Natural Science
Foundation of China (2021JJ10020, 2020JJ4215); the Key Research
and Development Program of Changsha (kq2004016); and Open
Research Projects of Zhejiang Lab (2021RD0AB02).

DATA AND CODE AVAILABILITY
All data and source code of this study are available at https://
github.com/wentao228/DGCL.

REFERENCES
1. Strittmatter SM. Overcoming drug development bottlenecks

with repurposing: old drugs learn new tricks. Nat Med 2014;20(6):
590–1.

2. Pritchard J-LE, O’Mara TA, Glubb DM. Enhancing the promise of
drug repositioning through genetics. Front Pharmacol 2017;8:896.

3. Bagherian M, Sabeti E, Wang K, et al. Machine learning
approaches and databases for prediction of drug–target inter-
action: a survey paper. Brief Bioinform 2021;22(1):247–69.

4. Stachel SJ, Sanders JM, Henze DA, et al. Maximizing diversity
from a kinase screen: identification of novel and selective
pan-Trk inhibitors for chronic pain. J Med Chem 2014;57(13):
5800–16.

5. Tsubaki M, Tomii K, Sese J. Compound–protein interaction pre-
diction with end-to-end learning of neural networks for graphs
and sequences. Bioinformatics 2019;35(2):309–18.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/6/bbad371/7325811 by H

unan U
niversity user on 28 O

ctober 2023

https://github.com/wentao228/DGCL
https://github.com/wentao228/DGCL


10 | Tao et al.

6. Zheng S, Li Y, Chen S, et al. Predicting drug–protein interaction
using quasi-visual question answering system. Nat Mach Intell
2020;2(2):134–40.
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